--- title: "Clinical Scores Calculator for Healthcare" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction-to-amscorer} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Introduction 'amscorer' package provides functions for calculating various clinical scores used in healthcare. These scores assist in assessing patient risks, predicting outcomes, and making informed clinical decisions. The key clinical scores included in this package are: - **Charlson Comorbidity Index (CCI)**: Predicts ten-year mortality risk based on comorbid conditions. - **EPICES Score**: Measures social deprivation. - **MELD Score**: Evaluates the severity of chronic liver disease. - **Alternative Fistula Risk Score (a-FRS)**: Assesses the risk of postoperative pancreatic fistula. - **Distal Pancreatectomy Fistula Risk Score (D-FRS)**: Estimates the risk of fistula after distal pancreatectomy. ```{r setup} library(amscorer) ``` # Usage Examples : ### Calculating the Charlson Comorbidity Index (CCI) The CCI predicts ten-year mortality risk based on the presence of comorbid conditions. ```{r my_data_cci} # Example data for CCI set.seed(123) n <- 10 my_data <- data.frame( age = sample(30:90, n, replace = TRUE), # age mi = sample(0:1, n, replace = TRUE), # Myocardial infraction chf = sample(0:1, n, replace = TRUE), # Congestive heart failure pvd = sample(0:1, n, replace = TRUE), # preripheral vascular disease cevd = sample(0:1, n, replace = TRUE), # Cerebrovascular accident or Transient ischemic attack dementia = sample(0:1, n, replace = TRUE), # Dematia cpd = sample(0:1, n, replace = TRUE),# Chronic obstructive pulmonary disease ctd = sample(0:1, n, replace = TRUE),# Connective tissue disease pud = c(sample(0:1, (n-1), replace = TRUE) , NA), # peptide ulcer disease liver_disease = sample(0:2, n, replace = TRUE), #Liver disease(None,Mild,Moderate to severe) diabetes_mellitus = sample(0:2, n, replace = TRUE),#Diabetes(None,uncomplicated,End-organ) hp = sample(0:1, n, replace = TRUE), # Hemipledia ckd = sample(0:1, n, replace = TRUE), #Moderate to severe Chronic kidney disease solid_tumor = sample(0:2, n, replace = TRUE), #Solid tumor(None,Localized,Metastatic) leuk = sample(0:1, n, replace = TRUE), # Leukemia lym = c(sample(0:1, (n-2), replace = TRUE) , c(NA , NA)), # Lymphoma aids = sample(0:1, n, replace = TRUE) # AIDS ) ``` ```{r} amscorer::cci(my_data ,replace_na_with_zero = FALSE) ``` *getting CCI score with amscorer* ```{r} amscorer::cci(my_data ,replace_na_with_zero = FALSE)$cci_score ``` ### EPICES Score The EPICES score measures social deprivation through a series of binary responses. ```{r my_data_EPICES} # Example data for EPICES my_data <- data.frame( epices_1 = c(1, 0, 1), epices_2 = c(0, 1, 1), epices_3 = c(0, 0, 0), epices_4 = c(1, 0, 0), epices_5 = c(0, 1, 0), epices_6 = c(1, 0, 1), epices_7 = c(0, 1, 0), epices_8 = c(0, 0, 1), epices_9 = c(1, 1, 0), epices_10 = c(0, 0, 1), epices_11 = c(1, 0, NA) ) ``` ```{r} amscorer::epices_score(my_data ,prefix = "epices",replace_na_with_zero = FALSE) ``` *getting only the EPICES score with amscorer* ```{r} amscorer::epices_score(my_data ,prefix = "epices",replace_na_with_zero = FALSE)$epices_score ``` ```{r} amscorer::epices_score(my_data ,prefix = "epices",replace_na_with_zero = TRUE)$epices_score ``` ### MELD 3.0 (currently recommended by OPTN) The MELD score evaluates the severity of chronic liver disease. ```{r my_data_MELD_3} # Example data for MELD 3.0 my_data <- data.frame( Sex = c(1, 0, 1), Creatinine = c(1.5, 2.0, 3.1), Bilirubin = c(1.2, 2.5, 1.8), INR = c(1.1, 1.4, 2.0), Sodium = c(135, 130, 140), Albumin = c(3.0, 2.5, 3.5) ) ``` ```{r} amscorer::meld_3(my_data) ``` ### MELD Score (Original, Pre-2016) ```{r my_data_MELD_pre_2016} my_data <- data.frame( Hemodialysis = c(0, 0, 1), Creatinine = c(1.2, 0.9, 1.5), Bilirubin = c(0.7, 1.1, 0.9), INR = c(1.0, 1.2, 1) ) ``` ```{r} amscorer::meld_pre_2016(my_data) ``` ### MELD Na (prior UNOS/OPTN version) ```{r my_data_MELD_NA} my_data <- data.frame( Creatinine = c(1.2, 2.5, 3), Bilirubin = c(0.5, 1.0, 2.1), INR = c(1.1, 1.5, 1.8), Sodium = c(136, 140, 145), Hemodialysis = c(0, 1, 0) ) ``` ```{r} amscorer::meld_NA(my_data) ``` ### Intra-operative Distal fistula risk score (D-FRS) The D-FRS estimates the risk of developing a postoperative pancreatic fistula after distal pancreatectomy. ```{r my_data_io_DFRS} my_data <- data.frame( ID = 1:4, BMI = c(20, 25, 30, 10), PT = c(5, 43, 1, 20), PD_size = c(100, 0, 1, 19), OP_time = c(500, 20, 605, 600), Texture = c(0, 1, 0, 1) ) ``` ```{r} amscorer::io_DFRS(my_data) ``` ### Preoperative distal fistula risk score score (D-FRS) The D-FRS estimates the risk of developing a postoperative pancreatic fistula after distal pancreatectomy. ```{r my_data_preop_DFRS} my_data <- data.frame( ID = 1:4, PT = c(5, 43, 3, 4), PD_size = c(25, 5, 4, 19) ) ``` ```{r} amscorer::preop_DFRS(my_data) ``` ### Alternative Fistula Risk Score for Pancreatoduodenectomy (a-FRS): The a-FRS assesses the risk of developing a postoperative pancreatic fistula (POPF) after pancreatoduodenectomy (PD). ```{r my_data_a_FRS} my_data <- data.frame( ID = 1:4, Texture = c(0, 1, 0,0), BMI = c(22, 25, 30 , 20), PD_size = c(5, 10, 1,2) ) ``` ```{r} amscorer::a_FRS(my_data) ``` ### updated Alternative Fistula Risk Score for Pancreatoduodenectomy (ua-FRS): Alternative Fistula Risk Score for Pancreatoduodenectomy (a-FRS) is designed to predict the risk of postoperative pancreatic fistula (POPF) after pancreatoduodenectomy (PD). ```{r my_data_ua_FRS} my_data <- data.frame( ID = 1:4, Sex = c(0, 0, 1,1), Texture = c(0, 1, 0,0), BMI = c(22, 25, 30 , 20), PD_size = c(5, 10, 1,2) ) ``` ```{r} amscorer::ua_FRS(my_data) ``` # Conclusion 'amscorer' package provides a comprehensive suite of tools for calculating key clinical scores, enhancing the ability to predict patient outcomes and make informed clinical decisions. By following the examples provided in this vignette, users can easily integrate these scoring functions into their clinical practice or research.